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Abstract. The problem on finding the coefficients of the Landau free energy expansion into the power
series of parameter of order has been considered for solutions and melts of linear heteropolymers whose
molecules comprise several types monomeric units arranged stochastically. The presence of such a quenched
structural disorder places this problem outside the framework of the traditional statistical physics inviting
for its solution special approaches. One of them, based on the replica concept and actively engaged in
theoretical physics of disordered systems, has been invoked in this paper to derive expressions for the
vertex functions in the Landau theory of heteropolymer liquids. An algorithm has been formulated which
permits one resorting to the simple diagram technique to write down expressions for these functions of
any order in terms of the statistical characteristics of chemical quenched structure of polymer molecules.
Explicit expressions for the contributions to the Landau free energy up to the fourth degree of order
parameters for polymer systems with an arbitrary structural disorder have been presented to illustrate
this general algorithm. Its potentialities have been also exemplified for the melt of random m-component
copolymer where exact analytical formulas for these contributions up to n = 6 at an arbitrary m have
been derived for the first time.

PACS. 64.60.-i General studies of phase transitions – 82.35.Jk Copolymers, phase transitions, structure
– 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling

1 Introduction

The Landau mean-field theory is one of the principal ap-
proaches in studying structural phase transitions in con-
densed matter theory [1]. The essence of this approach
consists in expanding non-equilibrium free energy F into
the power series of parameter of order ψ and neglecting
all its terms except the first few. Such a truncation of the
series is quite correct in the vicinity of the critical point
where the values of ψ are small. To find the equilibrium
value of the free energy F in the framework of the Landau
theory it is necessary to minimize F with respect to ψ.

A special theoretical consideration is employed when
examining transitions into incommensurable phases [1–3].
Here parameter of order ψ (r) is specified on the con-
tinuum of points r of three-dimensional Euclidian space,
whereas the Landau free energy F represents the func-
tional series rather than the ordinary one. In momen-
tum representation this series coefficients known as vertex
functions depend on wave vector q viewed as a continu-
ous variable. The character of this dependence is prede-
termined by the system’s peculiarities at the molecular
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level, and thus vertex functions can be found only by re-
sorting to the microscopic theory. Elaborating such a the-
ory for solutions and melts of polymers whose molecules
comprise more than one type of monomeric units one in-
evitably comes up against fundamental difficulties. This
is because real heteropolymer liquids consist of enormous
(virtually infinite) number of types of molecules, differ-
ing in chemical composition and structure. Averaging over
such a quenched structural disorder complicates qualita-
tively the determination of the equilibrium characteristics
of these liquids. For the solution of this kind of problems
the necessity arises of invoking rather sophisticated spe-
cific methods of the statistical physics of disordered sys-
tems, for instance, the replica trick [4,5]. The replica for-
malism, traditionally used to find the free energy of such
systems [5–7] can be also employed to derive expressions
of vertex functions appearing in the Landau theory. This
statement, which is of prime importance for the theory
of disordered systems, is exemplified in the present work
by the consideration of a heteropolymer liquid contain-
ing linear macromolecules with an arbitrary distribution
of different type monomeric units along polymer chains.
Since here we consider the melt of random heteropolymers
rather than single polymer chain with random volume
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interactions, there is no need to resort to spin glass ana-
logue of the order parameter used in works devoted to the
problem of the protein folding [8,9].

There is a number of publications in literature re-
porting the solution of the problem of finding the ex-
pressions for order 2, 3, 4 vertex functions for bi- and
three-block copolymers [10–17], gradient copolymers [18],
multiblock copolymers [19–24], and statistical copolymers
whose chemical structure is either random [25,26] or de-
scribable by the Markov chain [27–34]. Authors of the vast
majority of these papers studied exclusively binary copoly-
mers resorting therewith to some assumptions, such as
liquids’ incompressibility and/or the infinite length of its
constituent macromolecules. That is why of fundamental
theoretical interest is the development of a general algo-
rithm enabling one to find the vertex functions of any
order for arbitrary linear copolymers with any number of
types of monomeric units.

Such an algorithm, free from the above assumptions,
was put forward by the authors of paper [29]. There a pro-
cedure was formulated providing the possibility to express
the vertex functions through certain statistical character-
istics of the chemical structure of copolymer chains. As
a matter of convenience for practical realization of this
procedure it was suggested to resort to the diagram tech-
nique, analogous to that generally used in the theory of
phase transitions [35,36]. One of the major advantages
of this approach is that, when employed to design com-
puter programs for the construction of phase diagrams
of heteropolymer liquids, it permits a tedious procedure
of writing down and programming highly cumbersome
analytical expressions to be skipped. The diagram tech-
nique [35] has a limited applicability being designed ex-
clusively for finding just those vertex functions (referred
to as local ones [27,37]) which are needed to determine
the cloud point curve, spinodal and critical points. To cal-
culate other elements of a phase diagram of polydisperse
heteropolymer liquids in the framework of the Landau the-
ory it is necessary to find other vertex functions (termed
non-local ones [27,37]). They are absent under theoreti-
cal consideration of traditional systems comprising only
low-molecular weight components as well as hypothetical
monodisperse heteropolymer liquids consisting of identical
macromolecules. However for examination of the thermo-
dynamics of real heteropolymers showing a strongly pro-
nounced polydispersity, nonlocal vertices were found to
play a decisive role [38]. This stipulates the importance of
developing a diagram technique for their determination.
Some hints as to how this problem can be approached are
provided in papers [37,38]. However, the authors restricted
their consideration to the simplest of the nonlocal vertex
functions whose order is four. In the present paper a dia-
gram technique extending that introduced earlier [37,38]
is outlined. It enables one to find both local and nonlo-
cal vertex functions for the solutions and melts of linear
heteropolymers with arbitrary chemical structure.

The paper is organized as follows. Firstly, the problem
is stated to the solution of which this paper is devoted to
and the functionals used for this solution are discussed.

Then elements of the diagram technique are introduced
and general rules of its application for establishing the
relation between the Fourier transforms of vertex func-
tions and the Fourier transforms of physical correlation
functions are formulated. After that an algorithm is set
forth that permits to express these latter through gener-
ating functions of chemical correlators characterizing the
chemical structure of macromolecules. The potentialities
of the general approach put forward in the last section for
finding vertex functions of order n > 4 unknown in litera-
ture so far are exemplified for a random copolymer. Three
Appendices conclude the paper which provide a rigorous
substantiation of the algorithm underlying the introduced
diagram technique and present expressions for different
order contributions into the Landau free energy of het-
eropolymer liquids derived by this technique.

2 General treatment

Let us examine an arbitrary polymer liquid that consists
of linear molecules varying in numbers l1, . . . , lα, . . . , lm
of monomeric units of different types M1, . . . ,Mα, . . . ,Mm

and in the pattern of their arrangement in polymer chains.
Among such liquids are melts and solutions of linear
heteropolymers. It goes without saying that the general
theoretical framework embraces molecules of homopoly-
mers and solvents. The thermodynamically equilibrium
state of a polymer system under the mean field theory
consideration is characterized by density spatial distribu-
tions {ρα(r)} of monomeric units and solvent molecules
of every type. Let us denote overall number of both of
them byM . Unlike the second ones which are true thermo-
dynamic components of a polymer system, the first ones
represent quasicomponents. Since monomeric units in a
macromolecule are linked by stable covalent bonds, the
notion of the chemical potential makes no physical sense
for them. This circumstance is responsible for a number
of qualitative peculiarities arising under the elaboration
of the Landau theory for polymer liquids. When develop-
ing such a theory we will proceed from the Lifshitz con-
cept [39] by which the free energy of a polymer liquid is
presented as a sum of two auxiliary subsystems. The first
of them, subsystem of “separate units” (SU), is a liquid
whose thermodynamic components are solvent molecules
and monomeric units Mα. The second one, referred to as
subsystem of “chemical bonds” (CB), is the ideal gas of
macromolecules and solvent molecules. In accordance with
the Lifshitz concept rigorously substantiated in polymer
physics [39], the Landau free energy, divided by overall
number M of minimal structural units, can be written
down as the difference of two functionals

∆F{[ρα]} = F∗{[ρα]} − TSL{[ρα]} (1)

The first of them

F∗{[ρα]} = FSU −FIG =
1
M

∫
f∗(ρα(r))dr (2)

represents the difference of partial free energies of the
subsystem of separate units FSU and ideal gas of these
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units FSU at fixed densities’ distributions {ρα(r)}. Func-
tion f∗ within the framework of the Lifshitz concept is be-
lieved to be known from a theory of low-molecular weight
liquid. Particularly, in the “lattice liquid” model it reads

f∗({Φα})v
T

= (1−Φ) ln(1−Φ)+Φ− 1
T

∑
αβ

εαβΦαΦβ (3)

where volume fraction Φα(r) of α-th minimal type struc-
tural units at point r is related with their density at this
point in a simple way Φα(r) = vρα(r). This model param-
eters are volume v of an elementary cell of the lattice and
the matrix of physical interactions between units. Its ele-
ment εαβ equals the energy of the formation of a contact
between units Mα and Mβ . Quantity Φ = Φ1 + . . . + Φm

can, generally speaking, be dependent on r. Its average
value Φ = ρ̄v = Vmin/V is equal to the ratio of min-
imal volume Vmin = Mv, which could be occupied by
M units under their most compact packing, to volume V
they occupy in reality. The second functional in the right-
hand side of expression (1), named the partial “Lifshitz
entropy” [39,40] is defined by relationship

SL{[ρα]} =
1
M

∑
α

∫
drhα(r)ρα(r) − 1

T
FCB{[hα]}. (4)

The second term in the right-hand side of this expres-
sion is the partial free energy of a CB subsystem situated
in external fields Hα(r) = Thα(r) (α = 1, . . . ,m). Ex-
tremal values of dimensionless fields {hα(r)} can be found
in the mean field approximation from the following set of
equations

ρα(r) =
M

T

δFCB{[hα]}
δhα(r)

, (α = 1, . . . ,m). (5)

According to the general algorithm underlying the
Landau theory [1], one is supposed to expand functional
∆F{[ρα]} (1) into the functional series in powers of small
order parameters {ψα(r)} restricting the expansion to
several first terms. With the calculation of thermody-
namic characteristics of real systems in mind it is con-
venient to determine α-th order parameter via expression
ψα(r) = (ρα(r)− ρ̄α)/M where ρ̄α is volume average value
of the density of units Mα. The Landau free energy ex-
pansion (1) looks in Fourier representation as

∆F{[ψ̃α]} =
∞∑

n=2

1
n!
Fn{[ψ̃α]} (6)

where the nth order contribution is described by expres-
sion

Fn{[ψ̃α]} =
∑
{αi}

∑
{qi}

Γ̃ (n)
α1...αn

(q1, . . . ,qn)

× δK(q1 + . . .+ qn)
n∏

i=1

ψ̃αi(qi). (7)

Equilibrium free energy F is obtained as the absolute min-
imum of functional (6), (7). This is completely charac-
terized by vertex functions Γ̃ (n)

α1...αn(q1, . . . ,qn) equal to
the corresponding variational derivatives of functional (1)
with respect to the order parameters. These tensor-
functions can be written down as

Γ̃ (n)
α1...αn

(q1, . . . ,qn) = ρ̄n−1

[
f∗(n)

α1...αn

− T γ̃(n)
α1...αn

(q1, . . . ,qn)
]

(8)

where ρ̄ = ρ̄1 + . . .+ ρ̄m = M/V denotes average density
of all minimal structural units. Formula (8) differs from
that introduced earlier [38] by numerical factor ρ̄n−1 due
to the discrepancy in definition of the order parameters.
Expression in the square brackets in the right-hand side
of formula (8) is the difference of two terms describing
SU and CB subsystems, respectively. The first of these
terms is the component of tensor f∗(n) which is equal to
partial derivative of nth order of function f∗({ρα}) with
respect to variables ρα1 , . . . , ραn . Hence the contribution
into the vertex function (8) from the SU subsystem can
be presented in the form

ρ̄n−1f∗(n)
α1...αn

= TΦn−1 ∂n

∂Φα1 . . . ∂Φαn

(
f∗({Φα})v

T

)
(9)

appropriate for the calculations in terms of the “lat-
tice liquid” model (3). As it follows from formu-
las (1), (6), (7), (8), the second term in formula (8) repre-
sents up to the factor T coefficient ˆ̃γ(n)

α1...αn(q1, . . . ,qn) =
ρ̄n−1γ̃

(n)
α1...αn(q1, . . . ,qn) in the expansion of the partial

Lifshitz entropy

SL{[ψ̃α]} =
∞∑

n=2

1
n!
Sn{[ψ̃α]}, (10)

where nth order contribution is determined by formula

Sn{[ψ̃α]} =
∑
{αi}

∑
{qi}

ˆ̃γ(n)
α1...αn

(q1, . . . ,qn)
n∏

i=1

ψ̃αi(qi).

(11)
Evidently, coefficients γ̃(n)

α1...αn(q1, . . . ,qn) are controlled
exclusively by chemical structure of a polymer specimen.
This structure can be exhaustively characterized by spec-
ifying the complete set of chemical correlators of the spec-
imen of interest [41,42]. Among them the simplest ones
are one-point Y (1)

α and two-point Y (2)
αβ (k) correlators. The

first of them equals the probability for a randomly cho-
sen monomeric unit to be Mα, whereas the second one is
equal to the joint probability that a pair of randomly cho-
sen units, separated in a macromolecule by an arbitrary
sequence of k units, will be Mα and Mβ. As for n-point
chemical correlator Y (n)

α1...αn(j1, . . . , jn−1), this represents
the joint probability to find n ≥ 2 units of given types
Mα1 , . . . ,Mαn separated along polymer chain by arbitrary



254 The European Physical Journal B

sequences comprising, respectively, j1, . . . , jn−1 units. Of
prime importance in thermodynamics of heteropolymer
systems are generating functions of n-point chemical cor-
relators (gfCCs-n)

W (n)
α1...αn

(x1, . . . , xn−1) =
∞∑

j1=0

. . .
∞∑

jn−1=0

Y (n)
α1...αn

(j1, . . . , jn−1)
n−1∏
i=1

xji+1
i (12)

which specify the coefficients of the Lifshitz entropy ex-
pansion (11) [38]. In order to derive relationships express-
ing these coefficients through gfCCs one should solve two
problems. The first of them consists in finding dependen-
cies connecting the Fourier transforms γ̃(n) of tensor γ(n)

components and correlation functions of the density fluc-
tuations of structural units. The second problem is to ex-
press the Fourier transforms of these physical correlators
through gfCCs (12). A diagram technique will be intro-
duced below enabling the realization in practice of the
earlier formulated [38] general algorithm of the solution
of these two problems for melts and solutions of linear
heteropolymers of arbitrary chemical structure. The solu-
tion of the above problems implies, among other things,
the necessity to specify a conformational model of a poly-
mer chain. Below we will proceed from the simplest of
such models in which the vectors of all chemical bonds
between monomeric units are taken to be statistically in-
dependent and to have the same length a. In this freely
joint model the probability of any conformation, repre-
senting a sequence of vectors of all bonds of a polymer
molecule, equals the product of the probabilities of these
independent vectors. Fourier-transform λ̃(q) of the distri-
bution λ(r) of random vector r of length |r| = a as well
as its asymptotics at qa� 1

λ̃(q) =
sin(qa)

qa
≈ 1 − q2a2

6
≈ exp(−q2a2/6) (13)

enter into expressions for the coefficients of the Lifshitz
entropy expansion (11).

3 Vertex functions expressed through physical
correlators

Since the first item in formula (8) for these functions de-
fined by expression (9) is presumed to be known, to find
them one should determine only the components of ten-
sors γ̃(n) with different values of index n. This problem
calls for several steps solution. The first of them implies
the derivation of the expressions for ˆ̃γ(n)

α1...αn(q1, . . . ,qn)
through Fourier transforms g̃

(n)
α1...αn(q1, . . . ,qn) of irre-

ducible correlators g(n)
α1...αn(r1, . . . , rn) of the monomeric

units’ densities of a polymer specimen which are coeffi-

cients of functional series

FCB{[hα]}
T

=
∞∑

n=1

(−1)n−1

n!

∑
{αi}

∫
dr1 . . . drn

× g(n)
α1...αn

(r1, . . . , rn)
n∏

i=1

hαi(ri) (14)

Performing the Legendre transformation (4), (5),
which enables functions ˆ̃γ(n)

α1...αn(q1, . . . ,qn) to be ex-
pressed through g̃

(n)
α1...αn(q1, . . . ,qn), is a standard pro-

cedure for the Landau theory of magnetics and low-
molecular weight liquids [35,36].

The second step of the solution of the above prob-
lem consists in expressing in CB subsystem the Fourier
transforms of irreducible correlators through the Forurier
transforms of reducible ones. This procedure for polydis-
perse polymers differs qualitatively from that realized in
the traditional Landau theory [10]. Fundamental distinc-
tion resides here in the necessity to carry our the averag-
ing procedure of corresponding statistical characteristics
of polydisperse polymer liquid over configurations C con-
stituting its macromolecules. Of prime importance among
such characteristics are irreducible correlators resulting
from configurational averaging of analogous correlators
g
(n)
α1...αn(r1, . . . , rn;C) of individual molecules. These lat-

ter can be expressed through reducible correlators

K(n)
α1...αn

(r1, . . . , rn;C) =
n∏

i=1

ρm
αi

(ri;C) (15)

where ρm
αi

(ri;C) stands for the microscopic density at
point ri of αi-th type units in a macromolecule with con-
figuration C. The averaging in the right-hand part of ex-
pression (15) is accomplished over connformations of this
macromolecule, i.e. over the heat disorder [40]. Reducible
correlators (15) are coefficients of the expansion of par-
tition function Z({[hα]};C) of the individual molecule in
powers of external fields

Z({[hα]};C) =
∞∑

n=0

(−1)n

n!

∑
{αi}

∫
dr1 . . . drn

×K(n)
α1...αn

(r1, . . . , rn;C)
n∏

i=1

hαi(ri) (16)

whereas irreducible correlators g(n)
α1...αn(r1, . . . , rn;C) rep-

resent coefficients of an analogous expansion of the partial
free energy of this molecule

FCB ({[hα]};C) = − T

M
lnZ ({[hα]};C) . (17)

Upon taking nth order variational derivatives with respect
to external fields from both parts of this equality and sub-
sequently putting these fields equal to zero it is easy to ex-
press n-point correlators g(n)

α1...αn(r1, . . . , rn;C) through s-
point correlatorsK(s)

α1...αs(r1, . . . , rs;C) with s ≤ n. When
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performing configurational averaging of irreducible corre-
lators of individual molecules, it should be borne in mind
that macromolecules in a CB subsystem do not interact.
As a result, the free energy of this subsystem is represented
by the sum of free energies of individual molecules [29]

MFCB{[hα]} =
∑
C

Π(C)FCB({[hα]};C)

= Π 〈FCB({[hα]};C)〉 . (18)

Hereinafter angular brackets denote averaging over prob-
ability measure of configurations C where Π(C) and
Π stand, respectively, for the number of molecules of con-
figuration C and overall number of all molecules. Expres-
sion (18) may be conveniently presented as

FCB{[hα]} =
1
lav

〈FCB({[hα]};C)〉 (19)

where lav = M/Π is the average number of units in one
molecule. According to expression (19) the irreducible cor-
relator of units’ densities is defined by relationship

g(n)
α1...αn

(r1, . . . , rn) =
1
lav

〈
g(n)

α1...αn
(r1, . . . , rn;C)

〉
. (20)

The above reasoning about the correlation functions of
monomeric units’ densities remains true for their Fourier
transforms. In an momentum representation these latter
will be coefficients of the expansion of the free energy and
the partition function in powers of variables {h̃α(q)} that
are Fourier transforms of external fields {hα(r)}.

Let us point out some peculiarities of the Landau
theory when it is formulated in momentum represen-
tation. Firstly, due to translational invariance of the
system in hand among n arguments of tensor-function
K̃

(n)
α1...αn(q1, . . . ,qn;C) only n−1 will be independent ones

because the sum of all momenta is always zero. This can
be mathematically formalized by means of the Kronecker
delta symbol δK(q1 + . . .+ qn).

An important peculiarity of the Fourier transform of
an arbitrary irreducible correlator g̃(n)

α1...αn(q1, . . . ,qn;C)
is its vanishing provided at least one of its argu-
ments equals zero. That is why the expansion of func-
tional (17) in powers of external fields {h̃α(q)} comprises
just those items among the arguments of which none
is zeroth momentum. Hence, relationships by virtue of
which the Fourier transforms of irreducible correlators
g̃
(n)
α1...αn(q1, . . . ,qn;C) are expressed through the Fourier

transforms of reducible ones K̃
(n)
α1...αn(q1, . . . ,qn;C) do

not contain items having one-point correlators as factors

g̃(1)
α (q;C) ≡ K̃(1)

α (q;C) = l̄α(C)δK(q) (21)

Each of these latter vanishing at q �= 0 is equal to the
number l̄α(C) of units Mα in a macromolecule of config-
uration C at q = 0.

In momentum representation two- and three-point cu-
mulants coincide with corresponding statistical momenta

while four-point cumulant looks as follows

g̃(4)
α1α2α3α4

(q1,q2,q3,q4;C)=K̃(4)
α1α2α3α4

(q1,q2,q3,q4;C)

− K̃(2)
α1α2

(q1,q2;C)K̃(2)
α3α4

(q3,q4;C)

− K̃(2)
α1α3

(q1,q3;C)K̃(2)
α2α4

(q2,q4;C)

− K̃(2)
α1α4

(q1,q4;C)K̃(2)
α2α3

(q2,q3;C). (22)

In general, the Fourier transform of an irreducible n-point
correlator of any individual molecule is written down as
an expression representing an algebraic sum of several
items. Each of them has the appearance of the product
of Fourier transforms of several reducible correlators, the
overal number of points in which is n. Configurational
averaging of both parts of this expression permits ob-
taining formulas for tensor-functions g̃(n)

α1...αn(q1, . . . ,qn).
Each of them at n ≥ 4 represents the linear form of Fourier
transforms of averaged reducible correlators of individual
molecules

X(n)
α1...αn

(q1, . . . ,qn) =
1
lav

〈
K̃(n)

α1...αn
(q1, . . . ,qn;C)

〉

(23)
and various products of such correlators

X
(n)
J

(
q(1)

1 , . . . ,q(1)
m1

| . . . |q(ω)
1 , . . . ,q(ω)

mω

)
=

1
lav

〈
ω∏

ν=1

K̃
(mν)

α
(ν)
1 ...α

(ν)
mν

(
q(ν)

1 . . .q(ν)
mν

;C
)〉

. (24)

Expression (24) corresponds to partition J =
α

(1)
1 . . . α

(1)
m1 | . . . |α(ω)

1 . . . α
(ω)
mω into ω groups of a set

of n points, each being characterized by the values of
index αi and momentum qi. The number of points mν in
each ν-th group is more or equal to two [43]. For n = 4,
for instance, there are only three different partitions J of
four points into two groups containing two points each.
These partitions correspond to three last items in the
right-hand part of expression (22) which being averaged
over configurations reads

g̃(4)
α1α2α3α4

(q1,q2,q3,q4) = X(4)
α1α2α3α4

(q1,q2,q3,q4)

−X
(4)
α1α2|α3α4

(q1,q2|q3,q4) −X
(4)
α1α3|α2α4

(q1,q3|q2,q4)

−X
(4)
α1α4|α2α3

(q1,q4|q2,q3). (25)

In case of an arbitrary number n of points tensor-
function g̃

(n)
α1...αn(q1, . . . ,qn) equals the algebraic sum of

the Fourier transforms of regular (23) and “replica” (24)
correlators corresponding to all possible partitions J of
these points into groups comprising not less than two
points.

As it follows from formula (24) the replica correlator
is obtained by averaging the product of ω reducible corre-
lator of densities of units belonging to the same polymer
molecule, i.e. by averaging the product of ω correlators
of its replicas. If polymer is monodisperse each replica
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correlator becomes equal to the product of regular cor-
relators (23). In case of polydisperse specimen such fac-
torization does not take place. Hence the calculation of
vertex functions implies the necessity of finding tensor-
functions (24) by averaging over configurations C of the
product of correlators of different replicas of an individual
molecule.

The above outlined general procedure for express-
ing the coefficient of series (11) through correlators (23)
and (24) will be exemplified by the fourth order CB sub-
system vertex function related to cumulants in a following
way

ˆ̃γ(4)
α1α2α3α4

(q1,q2,q3,q4) =
∑
{βi}

{
g̃
(4)
β1β2β3β4

(q1,q2,q3,q4)

−
∑
p1p2

′ ∑
µν

[
g̃
(3)
β1β2µ(q1,q2,p1)g̃−1

µν (p1,p2)g̃
(3)
β3β4ν

×(q3,q4,p2)+(2↔3)+(2↔4)
]}( 4∏

i=1

g̃−1
βiαi

(qi,−qi)
)
.

(26)

Here two last items in square brackets are obtained by si-
multaneous permutations of indices and momenta of the
specified points. The prime at the sum on internal mo-
menta means that the summation does not include zero
value of a momentum. Going in formula (26) from Fourier
transforms of cumulants (20) to correlators (23), (24) we
will arrive at the known expression [29]

ˆ̃γ(4)
α1α2α3α4

(q1,q2,q3,q4) = ˆ̃γ(4),reg
α1α2α3α4

(q1,q2,q3,q4)

+ ˆ̃γ(4),nloc
α1α2α3α4

(q1,q2,q3,q4) (27)

where regular and nonlocal contributions to the ver-
tex function of the CB subsystem are presented by
expressions [44]

ˆ̃γ(4),reg
α1α2α3α4

(q1,q2,q3,q4) =
∑
{βi}

( 4∏
i=1

X−1
αiβi

(qi)
)

×
{
X

(4)
β1β2β3β4

(q1,q2,q3,q4) −
∑
p

∑
µν

[
X

(3)
β1β2µ(q1,q2,p)

×X−1
µν (p)X(3)

β3β4ν(q3,q4,−p) + (2 ↔ 3) + (2 ↔ 4)
]}

(28)

ˆ̃γ(4),nloc
α1α2α3α4

(q1,q2,q3,q4) =
∑
{βi}

( 4∏
i=1

X−1
αiβi

(qi)
)

×
{[
X

(4)
β1β2|β3β4

(q1,q2|q3,q4) −
∑
µν

X
(3)
β1β2µ(q1,q2, 0)

×X−1
µν (0)X(3)

β3β4ν(q3,q4, 0)
]
+

[
(2 ↔ 3)

]
+

[
(2 ↔ 4)

]}
.

(29)

The presence of the nonlocal contribution to vertex
functions is the most important peculiarity inherent to
the Landau theory of polydisperse polymers highlighted
for the first time in papers [25,28,27]. This contribution
involves positive and negative parts. The first of them
is due to averaging of the product of the correlators of
monomeric units’ densities over configurations of individ-
ual molecules whereas the second part is related to the ex-
tension of the summation over internal momenta to their
zeroth value.

In the Landau theory of monodisperse polymer liquids
both parts of the nonlocal contribution mutually annihi-
late. This can be readily noticed when considering four-
point vertex functions described by formula (29). So, in
the absence of polydispersity the replica correlator in this
formula admits factorization into the product of the cou-
ple of two-point correlators. The sum appearing in square
brackets is reduced just to the same expression. It can be
shown using relationships

X(3)
α1α2α3

(q,−q, 0) = Xα1α2(q,−q)Xα3 (0),

lim
p→0

∑
α1α2

Xα1(0)Xα2(0)X−1
α1α2

(p,−p) = 1 (30)

valid for any monodisperse polymers.
Under the description of polydisperse polymer liquids

in terms of the Landau theory each vertex function, start-
ing with the four-point one, can be presented as a sum
of regular and nonlocal contributions. In the next section
a diagram technique will be introduced enabling one to
express in a simple way these contributions through phys-
ical correlators (23) and (24) for the vertex function with
arbitrary number n of points.

4 Diagram technique

This technique is developed to construct a rather simple
algorithm that permits formulating in diagram language a
procedure providing the possibility to immediately write
down an expression for the contribution of any nth order
into the Lifshitz entropy (11). To this end it is necessary to
specify the complete set of the diagram technique elements
and to formulate the rules of their composition. Such a
set pictured in Figure 1 comprises an open circle, lines
and regular n-gons. Each vertex of these latter is supplied
with label ζ = (α,q) characterized by values of index α
and momentum q. Identical labels are ascribed to other
diagram elements in Figure 1. To them there correspond
the following analytical expressions:

1) Open circle is the Fourier transform of the param-
eter of order ψ̃α(q).

2) Solid line represents the element of the matrix in-
verse to that with elements

X(2)
α1α2

(q1,q2) ≡ Xα1α2(q1,q2)
≡ Xα1α2(q1)δK(q1 + q2). (31)
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Fig. 1. Elements of the diagram technique.
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Fig. 2. The fourth vertex ˆ̃γ(4).

3) Zigzag line corresponds to element X(−1)
α1α2 of matrix

inverse to that with elements Xα1α2 = Xα1α2(0).
4) Crossed line is the element of matrix equal to the

difference of matrices with elements X−1
α1α2

(q1)δK(q1+q2)
and X−1

α1α2
.

5) Black n-gon depicts the components of a tensor
whose convolution with matrix elements X−1

αiαj
(qi,qj)

yields the tensor with components ˆ̃γ(n)
α1...αn(q1, . . . ,qn).

Henceforward, unless otherwise stated, the term convolu-
tion means not only summing over indices but integrating
(summing) over momenta as well.

6) Gray n-gon is the Fourier transform of irreducible
correlation function g̃(n)

α1...αn(q1, . . . ,qn) (20).
7) White n-gon is the regular averaged reducible cor-

relator (23). The sum of momenta of all n apices is equal
to zero.

8) White n-gon partitioned by dotted lines into ω
parts, each ν-th of which contains mν ≥ 2 apices, cor-
responds to the replica averaged reducible correlator (24).
The sum of momenta of apices inside each ν-th group
equals zero.

Among all polygons depicted in Figure 1 only one,
with n = 6 apices, is chosen as an illustration. For such a
hexagon there are three possible types of the apices’ par-
tition into groups. Examples of partitions of each of these
three types are shown in diagram 8 of Figure 1.

Diagram elements serve as “bricks”, linking which one
can draw pictures equivalent to the analytical expressions
presented in the preceding sections. An apex of a polygon
can be joined to one of the line ends only if the labels of
the elements to be joined coincide. Let us call the lines,

= ++ +

+ + …

1 1

1

1 1- -

-

- -
2! 5!

6!

3! 4!
{[ ]}��SL

~ _

Fig. 3. Diagrammatic representation of contributions to the
Lifshitz entropy.

both ends of which are joined to polygons, internal edges
to distinguish them from external ones, attached exclu-
sively to one polygon. The second end of these latter can
either be linked to the open circle or be unlinked. The
summation is performed here over all conjunction points
while labels are retained only for free ends of lines if these
are present on diagrams. To exemplify the above reasoning
we adduced in Figure 2 graphical representation of func-
tion ˆ̃γ(4)

α1α2α3α4(q1,q2,q3,q4). Diagrams in the first row
of this figure correspond to expression (26) whereas the
second and the third rows represent a pictorial form of
analytical expressions, respectively, for regular (28) and
nonlocal (29) parts of the Fourier transform of four-point
vertex function in CB subsystem.

Once the diagram elements have been introduced we
come to the construction on their basis of the contribu-
tions (11) into the partial Lifshitz entropy whose expan-
sion (10) is demonstrated in Figure 3. In consonance with
the above outlined analytical procedure of the determi-
nation of these contributions, first, it is necessary to ex-
press black polygons through gray ones to subsequently



258 The European Physical Journal B

==

=

=

-3

-10 +15

-15 -10

+ 45

- 90

- 15

+ 60

Fig. 4. The vertex functions ˆ̃γ(n), (n = 3, 4, 5, 6) expressed via
irreducible correlators.

“substitute” them into diagrams of Figure 3. This proce-
dure leads to the diagram expressions some of which are
depicted in Figure 4 [38]. To obtain them the following
algorithm was employed.

In order to determine nth order contribution first of all
one should draw all possible tree-like diagrams, each con-
taining n external edges which link apices of gray polygons
with pending vertices. Solid lines correspond to these ex-
ternal edges unlike crossed lines corresponding to internal
ones. Deletion of any of such p edges in a tree-like dia-
gram results in its splitting into two diagrams. A diagram
can enter into the expression for Sn{[ψ̃α]} (11) with any
sign equal to (−1)p . The numerical coefficient in front
of a diagram (see Fig. 4) composed of n gray polygons,
every ith of which has ni external edges, can be deter-
mined by formula n!/[(n1!n2! . . .)ς]. To find coefficient ς
it is necessary to switch from the diagram of interest to
its graph by replacing each gray k-gon by corresponding
node. Then coefficient ς will be equal to the order of the
group of automorphisms of the mentioned graph.

The next stage of the development of the diagram tech-
nique suggests the formulation of a graphical algorithm for
the construction of diagrams corresponding to regular and
nonlocal contributions into the partial Lifshitz entropy.
The first of them is rather easy to find. Hence the regu-
lar nth order contribution is obtained from corresponding
diagrams, identical to those presented in Figure 4, by re-
placing all gray polygons in them by white polygons and
crossed lines by noncrossed ones. This operation leads to
the diagrams previously presented in review [38].

To find the nonlocal contribution recourse should be
made to the two- step procedure which is an extension of
that employed for the derivation of expression (27). This
procedure is realized as follows:

1) At the first step the crossed lines (Fig. 1, (4)) link-
ing in diagrams gray polygons should be changed for the
solid noncrossed (Fig. 1, (2)) and zigzag (Fig. 1, (3)) lines.
In the course of this procedure the diagrams with zeroth
external momentum should be discarded since their con-
tribution to the free energy is equal to zero.

2) At the second step it is necessary to present ev-
ery gray polygon as an algebraic sum of diagrams each
of which with an accuracy of the prefactor is white poly-
gon cut by ω − 1 dotted line into ω parts. Such a dia-
gram corresponds to the certain partition of marked apices
of gray n-gon into groups, each containing not less than
two representatives. The above apex can be either inter-
nal or external depending on the type of the adjacent
edge. Each ν-th group is characterized by a pair of inte-
gers (m(in)

ν ,m
(ex)
ν ) indicating how many internal and ex-

ternal apices it contains. Specification of such pairs for all
ω groups of a certain partition completely characterizes
the type π = {(m(in)

ν ,m
(ex)
ν )} of this partition of the poly-

gon in hand. So, 5-gon having n(in) = 1 internal apex and
n(ex) = 4 external apices admits just two types of differ-
ent partitions, π1 = {(0, 2)(1, 2)} and π2 = {(0, 3)(1, 1)}.
Any marked diagram comprising f gray labeled polygons
is presented as the sum of all its possible partitions, each
being specified by the set of particular partitions of the
polygons involved. Type Ω of the partition of the above
diagram is fully prescribed by types π(1), . . . , π(f) of these
polygons’ partitions. Evidently, all labeled diagrams of the
same type Ω will yield after the convolution with the com-
ponents of the parameter of order the identical contribu-
tion to the Lifshitz entropy. Due to the mutual indepen-
dence of the partitions of polygons of any type Ω gray
diagram its prefactor will equal the product of the pref-
actors of all white nonlabeled polygons presented in this
diagram

D(Ω) =
f∏

j=1

D
(
π(j)

)
. (32)

As for prefactor D(π) of such a polygon, corresponding to
its particular partition π = {(m(in)

ν ,m
(ex)
ν )}, this can be

calculated by formula

D(π) =
(−1)ω−1

ω

∑
{aν}

∑
{bν}

n(in)!
a1! . . . aω!

n(ex)!
b1! . . . bω!

× δK

(
n(in) −

ω∑
ν=1

aν

)
δK

(
n(ex) −

ω∑
ν=1

bν

)

×
ω∏

ν=1

δK (mν − aν − bν) . (33)

Here summing is performed over all possible sets of in-
dices (a1, . . . , aω) and (b1, . . . , bω), provided indices aν

and bν at any ν = 1, . . . , ω run, respectively, values
{m(in)

1 ,m
(in)
2 , . . . ,m

(in)
ω } and {m(ex)

1 ,m
(ex)
2 , . . . ,m

(ex)
ω }.

The factor in front of double sum in expression (32) re-
sults from the logarithm expansion whereas this very sum
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Fig. 5. The diagrammatic separation of the regular and non-
local terms.

represents the solution of a certain combinatoric problem.
The latter may be formulated if to the polygons’ inter-
nal and external vertices black and white balls are put
in correspondence, respectively. Then double sum in for-
mula (32) will coincide with the number of ways in which
the set of balls, consisting of n(in) indistinguishable black
and n(ex) indistinguishable white balls can be partitioned
among ω different urns in such a manner that one urn will
contain (m(in)

1 ,m
(ex)
1 ) balls of corresponding colors, other

urn will contain (m(in)
2 ,m

(ex)
2 ) balls, and so on.

When switching from gray diagrams to the white ones
these latter are divided into nonoverlapping fragments
whose borders are presented by dotted and zigzag lines. A
fragment can comprise pending vertices attached to differ-
ent polygons. Essentially, the sum of all momenta entering
in any of the mentioned fragments is equal to zero. This
means that calculating the contribution from some white
diagram into the Lifshitz partial entropy one should take
into account the presence in the integrand of the product
of the Kronecker delta symbols, each having as argument
overall momentum of all pending vertices present in the
corresponding diagram fragment.

Figure 5 demonstrates the example of switching from
gray diagrams to white ones in accordance with the above
formulated two-step procedure. The diagram presented in
this figure contains two gray polygons, having (n(in)

1 =
1, n(ex)

1 = 4) and (n(in)
2 = 1, n(ex)

2 = 2), respectively. The
only type of the partition (1,2) which the triangle admits
is the trivial one ω = 1, whereas the pentagon allows along
with the trivial type of the partition (1,4) also two non-
trivial ones with ω = 2, one of them being (0,2) (1,2)
and another – (0,3) (1,1). To these partition types there
correspond, respectively, three white diagrams in the sec-
ond row of Figure 5, whose prefactors found from formu-
las (31), (32) are equal to 1,(−6) and (−4). The third
diagram in the third row in this figure is absent since its
middle fragment comprises the pending vertex with the
zeroth momentum.

The above outlined two-step procedure permits ex-
pressing any gray diagram through white ones. Because
in the foregoing we have already formulated the rules for
expressing black diagrams through gray ones (see, for ex-
ample, Fig. 4), the problem of the construction of a general

3+-3

Fig. 6. The non-local part of fourth vertex.

graphical algorithm enabling one to express the contribu-
tion of any order Sn{[ψ̃α]} (11) into the partial Lifshitz
entropy (10) through the Fourier transforms of the re-
ducible correlators (23), (24) may be regarded as already
solved.

At values n ≥ 4 this contribution will include two types
of items, some of which describe the regular part of this
contribution whereas some other characterize the nonlocal
one. To the items of the first type which further will be
referred to as regular ones there correspond such white di-
agrams that do not contain dotted and zigzag lines. To the
second type items termed nonlocal ones there correspond
the rest of white diagrams. Figures 6, 7, 8, 9, 10 contain di-
agrams for the forth-, fifth- and sixth-order nonlocal items.
Diagrams depicted in Figure 6 are well known [38] whereas
those in other figures are presented for the first time.

To demonstrate the canceling of nonlocal parts of con-
tributions into the Lifshitz entropy of a polymer system in
the absence of polydispersity it is possible to resort to the
following speculative procedure. Each n-gon in white dia-
grams like those presented in Figures 6, 7, 8, 9, 10 should
be cut into separate fragments along dotted and across
zigzag lines. The first cut corresponding to the absence of
the averaging over configurations of macromolecules per-
mits splitting the Fourier-transforms of replica correlators
entering in expressions (24). The second cut corresponding
to the application of an equality of type (30) also leads to
factorization of each diagram contribution. It can be eas-
ily shown that the contributions of diagrams obtained by
such two cuts exactly annihilate each other. As a result the
nonlocal part of any order contribution into the Lifshitz
entropy will vanish.

Once completed the derivation of diagram tech-
nique which allows the compact expression of vertex
functions ˆ̃γ(n) (11) in terms of generalized correla-
tors X(n) (23), (24), let us discuss the procedure designed
for the expression of the generalized correlators in terms
of gfCCs (12).

5 Expression of generalized physical
correlators through gfCCs

5.1 Regular correlators

Those of them arising when the coordinates of at least two
points coincide invite a special consideration. With this in
mind it is convenient to switch from the Fourier transforms
of correlators X(n)

α1...αn(q1, . . . ,qn) to those of correlators
θ̃
(n)
α1...αn(q1, . . . ,qn) defined on the set of points whose co-

ordinates do not coincide. To do this, in diagrams for X(n)
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Fig. 8. The non-local part of sixth vertex I. Each of two fragments contains three pending vertices.
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Fig. 9. The non-local part of sixth vertex II. One fragment
contains four pending vertices whereas another contains two
ones.

an additional type of apex should be introduced resulting
from the contraction in one of several initial apices. An
apex formed by such a contraction is labeled by any of in-
dices and total momentum of contracted apices. For each
tensor-function X(n) there are different fashions of apices’
contraction in its diagram. These correspond to different
partitions of the set of apices into subsets with identical
apices’ indices. Function X(n) is the sum of contributions
from all possible partitions. For example, to the diagram
representation ofX(3) depicted in Figure 11 the analytical

expression corresponds

X(3)
α1α2α3

(q1,q2,q3) = δK (q1 + q2 + q3)
{
δα1α2δα2α3θα1

+ δα1α2 θ̃
(2)
α1α3

(q1 + q2,q3) + δα2α3 θ̃
(2)
α1α2

(q1,q2 + q3)

+ δα1α3 θ̃
(2)
α2α3

(q2,q1 + q3) + θ̃(3)α1α2α3
(q1,q2,q3)

}
. (34)

Concentric circles in Figure 11 can be replaced by ordi-
nary ones provided the product of the Kroneker deltas of
coincident points’ indices is introduced. The algorithm al-
lowing one to express X(n) of an arbitrary order via θ̃(n)

is quite evident.
The transition from tensor-functions X(n) to θ̃(n) is

imperative because just these latter are expressed directly
throughW (n) (12). The algorithm of the derivation of such
expressions is rather simple since by virtue of function
θ̃
(n)
α1...αn(q1, . . . ,qn) symmetry with respect to any permu-

tations n of its labels the latter is representable by the sum
of n! items. Each of them is obtained from the so-called
“base function”

W (n)
α1α2...αn

(e1, e2, . . . , en−1),

ei = λ̃(Qi), Qi =
i∑

f=1

qf (35)

by one of n! permutations of its labels. The notion of base
functions is of importance in the framework of the for-
malism outlined in this paper. The labels’ permutation
operation applied to each of these functions generates a
family of “principal functions”. Being specified on a set of
n points every such function is characterized by particular
sequence of their indices and is in a certain way dependent
on the momentum of these points.

The arguments of base function (35) can be found us-
ing a simple graphical algorithm, whose rigorous substan-
tiation is presented in Appendix A. For this purpose one
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Fig. 10. The non-local part of sixth vertex III. Each of three fragments contains two pending vertices.
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Fig. 11. Diagrammatic representation of X
(3)
α1α2α3(q1,q2,q3).

should place n points on a straight line and having as-
cribed a label to each point to link the neighboring points
by arches. The weight of an arch linking points αi and
αi+1 is taken to be equal to ei.

The above mentioned symmetry property of tensor-
function θ̃(n) allows, in some instances, to substan-
tially simplify expressions for the contributions into the
free energy. The fact is that to find these expressions
the necessity arises to perform the operation of tensor-
functions θ̃(n) contraction, generally speaking, both with
function

zα(q) =
∑

β

[
X−1(q)

]
αβ
ψ̃β(q) (36)

and with matrix-functions X−1 (31). Due to the above
symmetry some of n! items obtained by the contraction of
principal functions can turn out to be identical. Such a sit-
uation takes place if these principal functions differ solely
by permutations of the labels whereby their contraction
with functions (31) is performed. Thus, all n! items are
divided into r groups, in each of which they are identical.
Consequently when calculating the free energy it suffices
to find just one of the items in each group and multiply
it by the number of its elements. Hence to carry out func-
tion θ̃(n) contraction with several functions (36) the knowl-
edge is needed of rmn independent principal functions.

Let us illustrate the above general statement for n = 3
when the following expression holds

θ̃(3)α1α2α3
(q1,q2,q3) = W (3)

α1α2α3
(b1, b3) +W (3)

α2α1α3
(b2, b3)

+W (3)
α1α3α2

(b1, b2) +W (3)
α2α3α1

(b2, b1)

+W (3)
α3α1α2

(b3, b2) +W (3)
α3α2α1

(b3, b1)

bi = λ̃(qi), (i = 1, 2, 3) . (37)

In finding the contribution to the free energy from the
third order vertex a term arises wherein θ̃(3) contracts with
three functions (36). Here r = 1 and thus
∑
{α}

∑
{q}

θ̃(3)α1α2α3
(q1,q2,q3)zα1(q1)zα2(q2)zα3(q3)

× δK(q1 + q2 + q3)

= 6
∑
{α}

∑
{q}

W (3)
α1α2α3

(e1, e2)zα1(q1)zα2(q2)zα3(q3)

× δK(q1 + q2 + q3). (38)

Hence to have the contribution (38) calculated, it is
enough to find m3 principal functions Wα1α2α3(e1, e2).

For diagrams with internal edges at least those princi-
pal functions yield after the contraction the same contri-
bution, which are obtained by all possible permutations of
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external apices. For instance, one of the fourth-order con-
tributions into the free energy from ˆ̃γ(4)(reg) is simplified
as follows

∑
θ̃(3)α1α2ν(q1,q2,p)X−1

νµ (p)θ̃(3)α3α4µ(q3,q4,−p)

× δK(q1 + q2 + p)δK(q3 + q4 − p)
∏

i

zαi(qi)

= 4
∑[

W (3)
α1α2ν(b1, bp)+W (3)

α1να2
(b1, b2)+W (3)

να1α2
(bp, b2)

]

×
[
W (3)

α3α4µ(b3, bp) +W (3)
α3µα4

(b3, b4) +W (3)
µα3α4

(bp, b4)
]

×X−1
νµ (p)δK(q1 + q2 + p)δK(q3 + q4 − p)

∏
i

zαi(qi)

(39)

where
∑

(. . .) =
∑

{αi}
∑

{qi}
∑

νµ

∑
p(. . .) and bi was de-

fined above (37) whereas bp = λ̃(p). To comment on equal-
ity (39) let us note that this expression contains two func-
tions θ̃(3) each being contracted with two functions (36).
For every function θ̃(3) the number of the groups r = 3
having two elements each. If under the calculation of a di-
agram the contraction of functions θ̃(3) is realized with no
more than one function (36) no simplifications due to sym-
metry of θ̃(3) occur. This is because in these cases r = 6,
so that each group comprises a sole element.

For a symmetric copolymer (wherein the probability
to find any sequence of units equals, by definition, that of
a mirror reflected one) function θ̃(n) depends on smaller
number of principal functions. So, function θ̃(3) (37) for
such a copolymer reads

θ̃(3)α1α2α3
(q1,q2,q3) = 2

[
W (3)

α1α2α3
(b1, b3)

+W (3)
α2α1α3

(b2, b3) +W (3)
α1α3α2

(b1, b2)
]
. (40)

5.2 Replica correlators

As in the case of ordinary correlators here it is necessary
to go over from tensor-functions X(n) to functions θ̃(n)

defined on the set of distinct points. The principle un-
derlying this procedure remains unaltered. As before the
point formed under the contraction of several points is as-
signed any of indices of these coincident points and their
total momentum. For example, when the second point in
the first group and the first point in the second group co-
incide, function θ̃(4);(2)

α
(1)
1 α

(1)
2 α

(2)
1 α

(2)
2

(q(1)
1 ,q(1)

2 ,q(2)
1 ,q(2)

2 ) trans-

forms into function

θ̃
(3);(2)

α
(1)
1 α

(1)
2 α

(2)
2

(
q(1)

1 ,q(1)
2 + q(2)

1 ,q(2)
2

)
δ
α

(1)
2 α

(2)
1
. (41)

Under fixed n-point partition {mν} the function
θ̃(n);(ω)({mν}) is written down at any ω, like in the lo-
cal case, as a sum of n! items, each being equal to n-point
principal function. Function θ̃(n);(ω)({mν}) is, by defini-
tion, symmetric only with respect to any permutations of
the labels of the points within each group. Such a sym-
metry, however, is absent under the permutations of the
labels of apices belonging to different groups.

In view of the mentioned symmetry among n! of n-
point principal functions which add up to θ̃(n);(ω)({mν})
it will suffice to determine arguments of just N =
n!/(m1! . . .mω!) base functions. Let us choose as these lat-
ter such principal functions whose indices are ordered, i.e.
point α(ν)

k is situated to the left of the point α(ν)
k+1 for any

ν = 1, . . . , ω. Arguments of other principal functions can
by obtained by intragroup permutations of labels in base
functions.

Arguments of base functions can be found using a
simple graphical algorithm. To this end, let us put in
correspondence to every group of the partition chosen a
horizontal line with number of points mν equal to that of
elements in ν-th group. The mutual arrangement of n such
points on ω straight lines specifies their ordered configu-
ration Ω, which unambiguously corresponds to a certain
base function. For instance, for n = 4 there are 6 base
functions corresponding to the following configurations

1)
{
α

(1)
1 , α

(1)
2 , α

(2)
1 , α

(2)
2

}
, 2)

{
α

(1)
1 , α

(2)
1 , α

(1)
2 , α

(2)
2

}
,

3)
{
α

(1)
1 , α

(2)
1 , α

(2)
2 , α

(1)
2

}
, 4)

{
α

(2)
1 , α

(2)
2 , α

(1)
1 , α

(1)
2

}
,

5)
{
α

(2)
1 , α

(1)
1 , α

(2)
2 , α

(1)
2

}
, 6)

{
α

(2)
1 , α

(1)
1 , α

(1)
2 , α

(2)
2

}
.

(42)

Once erected a perpendicular from every point, all hor-
izontal straight lines are divided into (n − 1) intervals.
Thereafter it is necessary to link the neighboring points
of each group by arches. The weight of an arch in every
group is defined as in the previous subsection, whereas the
weight of the interval equals the product of the weights of
the arches embracing this interval. Then ith argument xi

of gfCC (12) will be determined by the weight of the ith
interval. If no arch embraces the interval in hand its weight
is put equal to unity. Given the arguments of all N base
functions, the remaining (m1! . . .mω!) principal functions
of the families generated by these base functions can be
obtained by labels’ permutations within the groups.

Due to function θ̃(n);(ω) symmetry with respect to the
labels’ permutations within the groups, its contraction
with functions (36) leads to the appearance of only N
different items, each representing the sum of (m1! . . .mω!)
identical terms.
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1) 2) 3)

4) 5) 6)

Fig. 12. Base functions w(4).

Inspecting Figure 12 it is easy to write down the ar-
guments of six base functions

1) W (4)

α
(1)
1 α

(1)
2 α

(2)
1 α

(2)
2

(
e
(1)
1 , 1, e(2)1

)

2) W (4)

α
(1)
1 α

(2)
1 α

(1)
2 α

(2)
2

(
e
(1)
1 , e

(1)
1 e

(2)
1 , e

(2)
1

)

3) W (4)

α
(1)
1 α

(2)
1 α

(2)
2 α

(1)
2

(
e
(1)
1 , e

(1)
1 e

(2)
1 , e

(1)
1

)

4) W (4)

α
(2)
1 α

(2)
2 α

(1)
1 α

(1)
2

(
e
(2)
1 , 1, e(1)1

)

5) W (4)

α
(2)
1 α

(1)
1 α

(2)
2 α

(1)
2

(
e
(2)
1 , e

(2)
1 e

(1)
1 , e

(1)
1

)

6) W (4)

α
(2)
1 α

(1)
1 α

(1)
2 α

(2)
2

(
e
(2)
1 , e

(2)
1 e

(1)
1 , e

(2)
1

)
. (43)

Hereinafter the following designations are employed

e
(ν)
i = λ̃(Qν

i ), Qν
i =

i∑
f=1

q(ν)
f . (44)

Intragroup permutations of the labels in functions (43)
permit finding all 4! = 24 principal functions whose sum
is equal to function θ̃(2)4 . Figure 13 displays some diagrams
exemplifying the use of the above algorithm for finding the
arguments of 6-point base functions

a)W (6)

α
(1)
1 α

(1)
2 α

(2)
1 α

(2)
2 α

(1)
3 α

(2)
3

(
e
(1)
1 , e

(1)
2 , e

(1)
2 e

(2)
1 , e

(1)
2 e

(2)
2 , e

(2)
2

)
,

b)W (6)

α
(1)
1 α

(2)
1 α

(1)
2 α

(2)
2 α

(1)
3 α

(1)
4

(
e
(1)
1 , e

(1)
1 e

(2)
1 , e

(1)
2 e

(2)
1 , e

(1)
2 , e

(1)
3

)
,

c)W (6)

α
(1)
1 α

(2)
1 α

(1)
2 α

(3)
1 α

(2)
2 α

(3)
2

(
e
(1)
1 , e

(1)
1 e

(2)
1 , e

(2)
1 , e

(2)
1 e

(3)
1 , e

(3)
1

)
.

(45)

Concluding this section let us touch upon one more,
already introduced in literature [38], way of expressing

the Fourier-transforms of replica correlators (24) through
gfCCs (12). Nonlocal function X(n);(ω) (24) can be ex-
pressed through the corresponding principal functions en-
tering into the expressions for regular functions X(n) (23).
Consider among them the function whose indices and ar-
guments coincide with those of function X(n);(ω). Using
the algorithm described in the preceding section let us
write down the required functions θ̃(k) in a symmetrized
form through principal functions. These latter have as
their arguments functions λ̃(q̂) where q̂ is a sum of some
momenta of apices pertaining to different groups

q̂ = σ(ν1) + σ(ν2) + . . .+ σ(νf ). (46)

Here symbol σ(ν) denotes the contribution into q̂ made by
the momenta from ν-th group. The rule enabling one to
find principal functions for nonlocal correlators of individ-
ual molecules X(n);(ω) from corresponding principal func-
tion for regular ones X(n) consists in replacing all argu-
ments λ̃(q̂) in the latter by products λ̃(σ(ν1)) · · · λ̃(σ(νf )).
Applying this procedure to all principal functions which
correspond to regular correlator X(n) as well as allowing
for the vanishing of the total momentum in every group
we will get all principal functions constituting nonlocal
correlator X(n);(ω).

To exemplify the application of the above general al-
gorithms, we present in the Appendix B expressions for
the contributions of the first four orders to the Lifshitz
entropy for an arbitrary linear copolymer written down
through gfCCs (12).

6 Random copolymers

The algorithm outlined in the foregoing permits finding
any vertex function in the Landau free energy expansion
of the melt or solution of a specimen of an arbitrary lin-
ear heteropolymer provided its gfCCs-n (12) is known.
Determination of these latter ranks among the problems
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Fig. 13. Diagrams for some gfCCs w(6) of the sixth order.

of statistical chemistry of polymers [41], in the frame-
work of which the ensemble of macromolecules is viewed
as a set of realizations of a stochastic process of conven-
tional movement along a polymer chain. For this move-
ment transitions occur at equal intervals between regu-
lar states S1, . . . , Sm, corresponding to types M1, . . . ,Mm

monomeric units, until the trajectory falls into absorbing
state S0, which corresponds to abandoning the limits of a
macromolecule. The simplest among such stochastic pro-
cesses with discrete time and finite number of states is the
process of the Bernoulli trails [45]. Here the probability να

of a trajectory to reach the state Sα at any step does not
depend on the states through which the trajectory passed
at the preceding steps. Copolymers consisting of molecules
whose sequence distribution obeys the Bernoulli statistics
are referred to as random copolymers. Their gfCC-n (12)
has the following form

W (n)
α1...αn

(x1, . . . , xn−1) = Xαn

n−1∏
i=1

XαiΘ(xi) (47)

where use is made of designation

Θ(x) =
[
(νx)−1 − 1

]−1

,

ν =
m∑

α=1

να = 1 − ν0 = 1 − l−1
av . (48)

Substituting of expression (47) into expres-
sions (B.1, B.2, B.3, B.4) leads to expressions (see
Appendix C) for the first four contributions to the

Lifshitz entropy of a random copolymer. The correspond-
ing formulas become simpler when switching from the
general thermodynamic model to the incompressible one.
This is mostly because function Ψ̃(q) (C.5) vanishes
at all values of momentum q. In this case all regular
contributions to the Landau free energy are presented by
formulas

Freg
2 {[ψ̃α]}

T
=

∑
αβ

[
δαβ

1
Xα

+ χαβ

] ∑
q

ψ̃α(q)ψ̃β(−q)

Freg
n {[ψ̃α]}

T
= (−1)n(n− 2)!

∑
{qi}

δK(q1 + . . .+ qn)

×Vn(q1, . . . ,qn), (n > 2),

χαβ = (εαα + εββ − 2εαβ)/T (49)

coinciding with those describing an incompressible low-
molecular liquid [34]. However, the expansion of the
Landau free energy of a random copolymer melt will
include along with the regular contributions the non-
local ones. The expressions for them are written down
in terms of functions Vn(q1, . . . ,qn) (C.6) and R(q) =
Θ(b(q)) (C.5). In particular, at n = 4, 5, 6 these expres-
sions will read

Fnloc
4 {[ψ̃α]}

T
= 12

∑
{qi}

δK(q1 + q2)δK(q3 + q4)

×R(q13)V2(q1,q3)V2(q2,q4) (50)

Fnloc
5 {[ψ̃α]} = 0 (51)
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Fnloc
6 {[ψ̃α]}

T
= 360

∑
{qi}

δK(q1 +q2 +q3)δK(q4 +q5 +q6)

×R(q14)R(q36)V2(q1,q4)V2(q2,q5)V2(q3,q6)

− 240
∑
{qi}

δK(q1 + q2)δK(q3 + q4)δK(q5 + q6)

×R(q135)V3(q1,q3,q5)V3(q2,q4,q6) (52)

where the following designations were used

q2
13 = q2

1 + q2
3, q2

14 = q2
1 + q2

4,

q2
36 = q2

3 + q2
6, q2

135 = q2
1 + q2

3 + q2
5. (53)

While the first of expressions (50), (51), (52) is well famil-
iar [25], the other two have not been reported in literature.

Relationships (49, 50, 51, 52) are exact for an incom-
pressible melt of a random copolymer with any number m
of types of monomeric units. At m = 2, when only one
parameter of order ψ̃(q) = ψ̃1(q) = −ψ̃2(q) is involved,
the second order contribution to the free energy looks as

Freg
2 {[ψ̃α]}

T
=

(
1

X1X2
+ χ

) ∑
q

ψ̃(q)ψ̃(−q),

χ = (ε11 + ε22 − 2ε12)/T (54)

whereas the functions Vn(q1, . . . ,qn) that occur in the
above expressions are determined by formula

Vn(q1, . . . ,qn) =
(

1
X1X2

)n−1

An

n∏
k=1

ψ̃(qk). (55)

The following designations were used at expression (55)

A3 = X2 −X1, A4 = (1 − 3X1X2),

A5 = (X2 −X1)(1 − 2X1X2),

A6 = 1 − 5X1X2 + 5(X1X2)2. (56)

When deriving the above formulas (49, 50, 51, 52) one
has to find the coefficients f∗(n)

α1...αn (8) defined by the ex-
pressions (9), (3). Since in the incompressible limit the
following equality holds

Ψ̃(q) =
∑

α

ψ̃α(q) =
Φ̃(q) − Φ̃(0)δK(q)

Mv
≡ 0, (57)

so that Ψ̃(q) = Φ̃(q) = 0, (q �= 0) one can demonstrate
that derivatives (9) of two first items in the expression (3)
equal zero after convolution with the function Ψ̃(q) and
give no contribution to the free energy.

Also the importance should be also stressed of allowing
for the diagonal terms in Fourier transforms of the regular
and replica correlators in the incompressible limit [31]. In

such a limit zα(q) = ψ̃α(q)/Xα (36), and calculating the
contributions to the Lifshitz entropy one should take into
account only those terms that do not contain as a fac-
tor the function Ψ̃(q). For instance, by using the explicit
expression for gfCC (47) it is an easy matter to demon-
strate that only the first item of the right-hand side of the
expression (34) gives non-zero contribution after convolu-
tion with the components of the order parameter. Thus,
neglecting the diagonal terms in functions X(n) leads to
the vanishing of the contributions to the Lifshitz entropy
for random copolymers. The omission of these terms is
justified when maximal correlation length in monomer se-
quences along the polymer chain is large enough and is
widely used for the calculation of the vertex functions for
the multiblock copolymers [34].

7 Conclusions

The general diagrammatic algorithm proposed in this pa-
per permits finding any vertex function for a specimen
of linear heteropolymer with an arbitrary pattern of ar-
rangement of monomeric units along macromolecules. An
original diagram technique underlying this algorithm es-
sentially facilitates the task of developing the computer
program for the calculation of the phase diagram of melts
and solutions of particular heteropolymers. This is due
to the possibility to invoke computer algorithms enabling
to operate directly with weighted graphs avoiding a te-
dious procedure of programming cumbersome analytical
formulas.

Given the expressions for vertex functions of a het-
eropolymer specimen it is possible to construct in the
framework of the Landau theory the phase diagram of
its melt or solution. For the practical realization of this
procedure one should use standard approaches currently
available in the statistical physics of polymers [17,38].

The key role in the expansion of the Landau free en-
ergy of polydisperse polymers belongs to non-local terms
describing the interaction of replicas. As far as we are con-
cerned, dealing with such terms the authors of all preced-
ing theoretical papers restricted their account only to the
terms proportional to the forth power of the order param-
eter. However in the traditional Landau theory of phase
transitions the addition of the subsequent items in the free
energy expansion is known (see, for example, [2,46,47]) to
qualitatively change the appearance of the phase diagram
in hand. There are serious grounds to believe that just
the same situation is the case under thermodynamic con-
sideration of polymer liquids. This stipulates the utmost
importance of the solution of the problem of finding the
vertex functions whose order is more than four. Having
them found by means of the algorithm put forward in the
present paper one may write down the expression for the
Landau free energy of a polydisperse heteropolymer liq-
uid. This expression differing from that employed earlier
by the presence of additional terms describes evidently
more diverse phase behavior of polymer systems under
examination.
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Appendix A: Conformational
and configurational averaging

In order to find regular correlator (23) it is necessary to
make use of relationship (15) upon preliminary performing
the Fourier transform. On doing so we will arrive at

K̃(n)
α1...αn

(q1, . . . ,qn;C) =
∑
k1

. . .
∑
kn

n∏
i=1

σαi(ki)

× exp

(
i

n∑
i=1

qir(ki)

)
(A.1)

where indicator σα(k) either equals unity if the kth unit
from the beginning of a polymer chain is α-type or equals
zero if this is not the case. Evidently, configuration C of a
linear macromolecule is unambiguously characterized by
sequence α(k) of the values of the indicator subscript at
k = 1, 2, . . . As for a macromolecule conformation, this is
specified by a set of spatial coordinates r(1), r(2), . . . of all
its monomeric units. The joint distribution of the proba-
bilities of their coordinates defines the probability measure
on the set of macromolecules’ conformations. We will de-
note the averaging over this measure of any conformation-
dependent quantity by supplying it by over-line.

Substituting expression (A.1) into formula (23) it
is easy to find tensor-function X

(n)
α1...αn(q1, . . . ,qn). The

same formula may be resorted for determining tensor-
function θ̃

(n)
α1...αn(q1, . . . ,qn). For this purpose all terms

should be eliminated, in which at least two of num-
bers k1, . . . , kn coincide. The remaining terms are pre-
sented as sum n! of items. Each of them is a sum over
all points of n-dimensional sector characterized by a par-
ticular ordered set of distinct integers {ki}. Let us consider
one of n! such items corresponding to the set k1 < k2 <
. . . < kn which will be referred to as base set. Its contri-
bution into θ̃(n)

α1...αn(q1, . . . ,qn) looks as

1
lav

∑
k1<k2<...<kn

〈
n∏

i=1

σαi(ki)〉exp

(
i

n∑
i=1

qir(ki)

)
. (A.2)

To carry out conformational averaging of the exponent in
this expression, it is convenient to have every vector r(ki)
written down as a sum of random vectors

r (ki) = r (k1) +
i−1∑
j=1

∆r (kj) ,

∆r (kj) = r (kj+1) − r (kj) , (A.3)

which for a Gaussian macromolecule are independent and,
except for the first vector, normally distributed. Hence the
averaging over conformations is reduced to the product
(n − 1) of the one-dimensional Gaussian integrals taken
analytically. As the result the simple expression will be
arrived at

exp

(
i

n∑
i=1

qir(ki)

)
= δK(q1 + . . .+ qn)

n−1∏
i=1

(ei)ki+1−ki

(A.4)
where dependence ei on momenta {qi} has been defined
above (35). The delta-symbol in this expression is obtained
by integrating the exponent over random vector r(k1) gov-
erned by spatial position of a macromolecule rather than
by its conformation. On substituting relationship (A.4)
into expression (A.2) and going to variables ji = ki+1−ki,
i = 1, . . . , n− 1 we will reduce expression (A.2) to the fol-
lowing form

W (n)
α1...αn

(
b(1), . . . , b(n−1)

)
=

∑
j1

. . .
∑
jn−1

Y (n)
α1...αn

(j1, . . . , jn−1)
n−1∏
i=1

(ei)ji (A.5)

where

Y (n)
α1...αn

(j1 . . . , jn−1) =

1
lav

∑
k

〈
σα1(k) . . . σαn

(
k +

n−1∑
i=1

(ji + 1)

)〉
. (A.6)

This formula describes only one of n! contributions cor-
responding to the sector k1 < k2 < . . . < kn. The contri-
bution from any other sector with ordered set ki1 < ki2 <
. . . < kin can be also described by this formula by the
rearrangement of its indices and momenta in line with the
permutation (1, 2, . . . , n → i1, i2, . . . , in). The summation
of contributions of all sectors yields the final expression
for X(n)

α1...αn(q1, . . . ,qn), exemplified for n = 3 by rela-
tionship (37).

In the nonlocal case the correlator X
(n);(ω)
J (24) is

given by expression

X
(n);(ω)
J

(
q(1)

1 , . . . ,q(1)
m1

| . . . |q(ω)
1 , . . . ,q(ω)

mω

)
=

{ ω∏
ν=1

( ∑
k
(ν)
1 ...k

(ν)
mν

)}
G({s})H({q}) (A.7)

where
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G({s}) =
1
lav

〈
ω∏

ν=1

mν∏
i=1

σαν
i
(k(ν)

i )〉

H({q}) =
ω∏

ν=1

exp

(
i

mν∑
i=1

q(ν)
i r(k(ν)

i )

)
. (A.8)

Analogously to the local case, the function θ̃
(n);(ω)
J can

be obtained from expression (A.7) provided indices k(ν)
i

do not coincide one with another. This function repre-
sents the sum of n! terms, with each term corresponding
to a particular permutation of indices {k(ν)

i }. Evidently,
among all n! terms there are N = n!/(m1! . . .mω!) ones
which can be obtained by intergroup permutations of in-
dices. In turn, for each intergroup permutation there ex-
ist (m1! . . .mω!) intragroup permutations of indices. The
contributions to function θ̃(n);(ω)

J resulting from intergroup
and intragroup permutations of indices correspond to the
base and principal gfCCs-n, respectively. These have been
introduced in Section 5.2.

To find the arguments of base functions it is conve-
nient to start from the permutation that answers to the
following “overall” ordering of indices: k(1)

1 < . . . < k
(1)
m1 <

k
(2)
1 < . . . < k

(2)
m2 < k

(ω)
1 < . . . < k

(ω)
mω . Taking conforma-

tional average in the expression (A.8) one finds the follow-
ing explicit formula for the corresponding base function

W
(n)
J

(
e
(1)
1 , . . . , e

(1)
m1−1, 1, e

(2)
1 , . . . , e

(2)
m2−1, 1, . . . ,

. . . , 1, e(ω)
1 , . . . , e

(ω)
mω−1

)
=

∑
k
(1)
1 <...<k

(ω)
mω

G ({s})

×
ω∏

ν=1

{
δK

(
q(ν)

1 + . . .+ q(ν)
mν

) mν−1∏
i=1

(
e
(ν)
i

)j
(ν)
i

}
. (A.9)

The intergroup permutations of indices {k(ν)
j } in the ex-

pression under sign of sum (A.9) (provided k
(ν)
j < k

(ν)
j+1

for any ν = 1, . . . , ω) allow one to find the arguments of
the rest of base gfCCs. For instance, when n = 4, ω = 2
there are six intergroup permutations which lead to the
following ordering

1) k(1)
1 < k

(1)
2 < k

(2)
1 < k

(2)
2 , 2) k(1)

1 < k
(2)
1 < k

(1)
2 < k

(2)
2 ,

3) k(1)
1 < k

(2)
1 < k

(2)
2 < k

(1)
2 , 4) k(2)

1 < k
(2)
2 < k

(1)
1 < k

(1)
2 ,

5) k(2)
1 < k

(1)
1 < k

(2)
2 < k

(1)
2 , 6) k(2)

1 < k
(1)
1 < k

(1)
2 < k

(2)
2

(A.10)
each of which corresponds to one of the six base functions
presented earlier (43). In turn, the intragroup permuta-
tions of indices in every base function gfCC enable one to
find all (m1! . . .mν !) its principal gfCCs.

Appendix B: The contributions to the Lifshitz
entropy expressed through gfCCs

Here we present the expressions for contributions of the
first four orders to the Lifshitz entropy for an arbitrary

linear copolymer written in terms of gfCCs (12)

Sreg
2 {[ψ̃α]} = −

∑
{qi}

δK(q1 + q2)

×
{
W (1)

α1
δα1α2 + 2W (2)

α1α2
(b1)

} 2∏
k=1

zαk
(qk) (B.1)

Sreg
3 {[ψ̃α]} =

∑
{αi}

∑
{qi}

δK(q1 + q2 + q3)
{
W (1)

α1
δα1α2δα2α3

+ 3[W (2)
α1α2

(b1) +W (2)
α2α1

(b1)]δα2α3

+ 6W (3)
α1α2α3

(b1, b2)
} 3∏

k=1

zαk
(qk) (B.2)

Sreg
4 {[ψ̃α]} =

∑
{αi}

∑
{qi}

{
δ(q1 + q2 + q3 + q4)

×
[
24W (4)

α1α2α3α4
(e1, e2, e3) − 2δα1α2δα2α3

× [
4W (2)

α3α4
(b3) + 4W (2)

α4α3
(b3) + δα3α4W

(1)
α4

]]

− 12
∑
µ1µ2

∑
p

δK(q1 + q2 + p)δK(q3 + q4 − p)

×X−1
µ1µ2

(p)Gα1α2µ1(q1,q2,p)

×Gα3α4µ2(q3,q4,−p)
} 4∏

k=1

zαk
(qk) (B.3)

Snloc
4 {[ψ̃α]} = −12

∑
{αi}

∑
{qi}

δ(q1 + q2)δ(q3 + q4)

×
{
W (4)

α1α2α3α4
(b1, 1, b3) +W (4)

α3α4α1α2
(b3, 1, b1)

+W (4)
α1α3α2α4

(b1, b1b3, b3) +W (4)
α3α1α4α2

(b3, b1b3, b1)

+W (4)
α1α3α4α2

(b1, b1b3, b1) +W (4)
α3α1α2α4

(b3, b1b3, b3)

+ δα2α4

[
W (3)

α1α2α3
(b1, b3) +W (3)

α3α2α1
(b3, b1) + δα1α3

×W (2)
α1α2

(b1b3) +W (3)
α1α3α2

(b1, b1b3) +W (3)
α2α3α1

(b1b3, b1)

+W (3)
α3α1α2

(b3, b1b3) +W (3)
α2α1α3

(b1b3, b3)
]
−

∑
µ1µ2

X−1
µ1µ2

(0)

×Gα1α2µ1(q1,q2, 0)Gα3α4µ2(q3,q4, 0)
} 4∏

k=1

zαk
(qk)

(B.4)

where the designations indicated at expres-
sions (35), (36), (37) have been used and we also
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denote

Gα1α2µ1(q1,q2,p) =
[
W (2)

α1α2
(b1) +W (2)

α2α1
(b1)

]
δα2µ1

+W (3)
α1α2µ1

(b1, bp) +W (3)
α1µ1α2

(b1, b2) +W (3)
µ1α1α2

(bp, b2),

Gα3α4µ2 (q3,q4,−p) =
[
W (2)

α3α4
(b3) +W (2)

α4α3
(b3)

]
δα4µ2

+W (3)
α3α4µ2

(b3, bp) +W (3)
α3µ1α4

(b3, b4) +W (3)
µ1α3α4

(bp, b4).

(B.5)

Appendix C: The contributions to the Lifshitz
entropy for the random copolymer

Sreg
2 {[ψ̃α]} = −

∑
{qi}

δ(q1 + q2)
{
V2(q1,q2) − U(q1)

× Ψ̃(q1)Ψ̃(q2)
}

(C.1)

Sreg
3 {[ψ̃α]} =

∑
{qi}

δ(q1 + q2 + q3)
{
Ω3(q1,q2,q3)

+ 3Ω2(q1,q2)U(q3)Ψ̃(q3) + (3/2)Ω1(q2)

× U(q1)U(q3)Ψ̃(q1)Ψ̃(q3)
}

(C.2)

Sreg
4 {[ψ̃α]} = −

∑
{qi}

δ(q1 + q2 + q3 + q4)

×
{

2Ω4(q1,q2,q3,q4) + 8Ω3(q1,q2,q3)U(q4)v(q4)

+ 12Ω2(q2,q4)U(q1)U(q3)Ψ̃(q1)Ψ̃(q3)

+ (3/4)ζ ({qi};q1 + q2)
}

(C.3)

Snloc
4 {[ψ̃α]} = −

∑
{qi}

δ(q1 + q2)δ(q3 + q4)
{
R(q13)

× Y (q1,q3)Y (q2,q4) − (1/2)U(q1)U(q3)

× Ψ̃(q1)Ψ̃(q3)Ω2(q2,q4) − (3/4)ζ({qi}; 0)
}

(C.4)

where q2
13 = q2

1 + q2
3 and we denote

Ψ̃(q) =
m∑

γ=1

ψ̃γ(q), R(q) =
[
(νλ̃(q))−1 − 1

]−1

,

U(q) = 2

(
1 − νλ̃(q)
1 + νλ̃(q)

)
R(q). (C.5)

The following designations were also used at the expres-
sions (C.1, C.2, C.3, C.4)

Vn (q1, . . . ,qn) =
m∑

γ=1

(
1
Xγ

)n−1 n∏
k=1

ψ̃γ(qk)

Y (q1,q3) =
1
2

[U(q1) + U(q3) − 2U(q1)U(q3)]

× Ψ̃(q1)Ψ̃(q3) +Ω2(q1,q3)

Ωn(q1, . . . ,qn) = Vn(q1, . . . ,qn)

+
n−1∑
p=1

(−1)p
n∑

s1<...<sp

[ p∏
ν=1

U(qsν )Ψ̃(qsν )
]

×
n∑

k1<...<kn−p(ki �=sj)

Vn−p(qk1 , . . . ,qkn−p)

+ (−1)n
n∏

k=1

U(qk)Ψ̃(qk)

ζ({qi};p) =
[
−7U(q2)U(q4) + 4U(q2) + 4U(q4)

− U(p)(2 − U(q2))(2 − U(q4))
]
U(q1)

× U(q3)
4∏

k=1

Ψ̃(qk). (C.6)

These expressions correspond to the most general case
of the compressible Bernoullian copolymer with the finite
length macromolecules. It is evident that the contributions
to the Lifshitz entropy for an infinite random copolymer
can be found from the above expressions by equating to
zero the probability of absorbing state ν0.
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